

Assessing the Oxidative Capacity of the Atmosphere: MCMA-2003 as a Case Study

P. Sheehy¹¹·*, R. Volkamer¹,²²,#, E. Velasco³, M.L. Alexander⁴, T. Jobson⁵, B. Lamb⁵, L.T. Molina¹.³

¹MlT, Cambridge MA; ²UC-San Diego; ³Molina Center, La Jolla CA; ⁴PNNL,Richland WA; ⁵WSU, Pullman WA
*sheehy@mit.edu, *rainer@chem.ucsd.edu

Abstract:

Measurements from the Mexico City Metropolitan Area (MCMA) field campaign in 2003 (MCMA-2003) and a photochemical box model employing the Master Chemical Mechanism (MCMv3.1) are used to study primary HO_x (=OH+HO $_2$) radical sources and RO_x radical cycling. HONO measurements are accurately modeled using an equilibrium model constrained for OH, NO, and photolysis. A source apportionment of photochemical HCHO is performed considering: VOC precursors, oxidants, and primary vs. secondary oxidation. The box model is used to assess the level of constraint on primary radical sources (due to gas-phase processes). Predicted concentrations of HO_x , when compared to measurements, demonstrate a significant lack of HO_2 radicals in the early morning: This "missing reactivity" is highest during peak photochemical activity and has a significant impact on both VOC oxidation and ozone production throughout the day.

Measurements from MCMA-2003 (CENICA):

- primary radical sources: HONO, HCHO, O₃, alkenes/O₃^{1,2}
- radical sinks: 103 VOC (55 VOC by measurements^{2,3}), NO, NO₂, SO₂, CO
- temperature, pressure, dilution4, j-values1
- OH and HO₂ measurements; also OH reactivity/loss⁵

Model description:

- steady-state, flexible-top, photochemical box model
- Master Chemical Mechanism (MCMv3.16,7):
- near-explicit mechanism (135 VOC, 13500+ reactions); ideal for RO, radical modeling; no chemical lumping
- modeling scenarios: HO_x-unconstrained, OH-constrained, HO₂-constrained, HO_x-constrained

Radical sources: HONO and HCHO

A **lower limit of measured OH** – based on a 0.01 pptv statistical offset – and a new recommendation⁸ for **j(HONO)** bring measured and modeled values into agreement; HONO is accurately predicted with an equilibrium model (commonly referred to as photostationary state, PSS; we do not use this term because we use night-time OH values)

Up to 70% of the observed HCHO is produced from photochemistry⁹: The bulk of **photochemical HCHO** produced in the MCMA is from the **primary** oxidation of **alkenes**; **OH** is the dominant oxidant, while **O**₃ makes a minor contribution.

The photolysis of HONO, O_3 , and HCHO, and O_3 /alkene reactions account for some 60% of the primary HO_x flux on average; even though unconstrained carbonyls – formed as secondary oxidation products – contribute up to 40% of new RO_x , the model is well-constrained for gas-phase primary radical sources.

			90					100
	% contribution to ΣOH _{new}							
	03:00	07:00	08:00	09:00	11:00	13:00	15:00	06-18 (avg)
HONO	-	50.2	44.9	26.1	8.2	5.1	5.7	15.6
O ₃	-	0.1	0.5	4.0	20.5	29.2	20.1	13.0
нсно	-	5.5	10.4	20.6	21.5	17.7	13.3	13.7
сносно	-	0.2	0.5	1.2	2.7	3.2	2.9	1.9
alkenes + O ₃	95.0	24.7	21.8	20.2	8.8	5.7	11.0	18.1
→OH	48.3	11.9	10.7	10.2	4.6	3.0	5.3	8.9
→HO ₂	7.1	1.6	1.6	1.7	1.0	0.7	1.2	1.6
→RO ₂	39.6	11.2	9.5	8.3	3.2	2.0	4.5	7.6
carbonyls	-	18.1	21.4	26.2	35.2	35.0	41.1	30.1
→HO ₂	-	9.1	11.0	14.0	20.0	20.2	21.6	16.4
→RO ₂	-	9.0	10.4	12.2	15.2	14.8	19.5	13.7
RH + NO ₃	5.0	0.2	0.3	1.0	1.8	2.3	4.2	3.2
sum	100	99.0	99.8	99.3	98.7	98.2	98.3	95.6

References: ¹Volkamer et al, GRL,32 (2005); ²Velasco et al, ACPD,7563 (2006); ³Volkamer et al, Atmos Env,3731 (1998); ⁴de Foy, Garcia, personal communication; °Shirley et al, ACP,3163 (2006); °Bloss et al, ACP,623 (2005); 'Bloss et al, ACP,641 (2005); °Wall et al, J Atmos Chem, 31 (2006); °Garcia et al, ACPD,11583/2005)

- Model accurately predicts HO_x diurnal profiles; with the exception of the prediction of OH in the HO₂-constrained case; predicted OH is within measured and modeled uncertainties for the entire day
- HO₂ is consistently under-predicted at night and in the morning (06-08:00) in both the HO_x-unconstrained and OH-constrained scenarios
- The model is missing a HO₂ source; however, the source cannot generate OH via cycling
- HO₂-constrained model drastically over-predicts OH

What does this mean in terms of VOC oxidation and ozone formation?

Relevant definitions/descriptions:

- 1) chain length: number of times that OH will be regenerated via RO, cycle before it is removed
- 2) HO₂/OH v NO and 3)RO₂/HO₂ v NO: key ratios to test our understanding of RO₂ cycling
- 4) ozone production rate, P(O₃): expressed here as number of NO-to-NO₂ conversions from RO_x radicals

Key findings:

- 1) chain length: drastic under-prediction of OH cycling in the early morning hours (06:00-08:00) in the HO₂-unconstrained case, a difference of a factor of 2 9.
- 2) HO₂/OH v NO: a) at high NO (in the morning) the ratio is a factor of 3 smaller than the measured ratio, and overall, the measured and modeled slopes vary significantly. b) modeling of individual days ("high NO" and "low NO" day) demonstrates that conclusions based on a campaign averaged model are appropriate.
- 3) RO₂/HO₂ v NO: note the low ratio in the HO_x-constrained case (red circles), especially at high NO; the coupling between OH and RO₂ yields a lower-than-expected RO₂/HO₂ ratio.
- **4)** P(O₃): in the early morning, the greatest percentage of NO-to-NO₂ conversions take place, with the lack of predicted radicals resulting in a factor of 10 difference in cumulative ozone production in the predicted vs observed cases. In the mid-afternoon (16:00), the model underestimates cumulative ozone production by 70%.

Conclusions:

- + Recommended lower limit for night-time and morning OH; confirmation of updated i(HONO) value
- + An equilibrium model with HONO sources and sinks constrained accurately predicts measured HONO concentrations throughout the day
- + Primary radical sources are well-constrained by measurements; HCHO is the predominant day-time HO_{ν} radical source
- + We accurately predict OH; however, we drastically under-predict HO₂ at night and in the early morning, which has significant implications for O₃ formation throughout the day; we are missing an HO₂ source

Acknowledgments: This research was supported by funds from the NSF, DoE, and MIT/AGS. P. Sheehy acknowledges. JI Steinfeld for his financial (via MIT/AGS) and advisory support The authors acknowledge the entire team of MCMA-2003 researchers, who provided the measurements. R. Volkamer acknowledges the Alexander von Humboldt Foundation, his hosts P. Crutzen and K. Prather. PS and RV, are both grateful to Ulrich Platt.